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THE PERFORMIANCE OF VARIABLE SAMPLING PLANS WHEN THE

NOR IAL DISTRIBUTION IS TRUNCATED

Helmut Schneider

University of North Carolina
Chapel Hill, N.C.

The robustness of standard variable sampling plans by Lieberman

and Resnikoff is considered with respect to a truncation of the

normal distribution. It is shown how variable sampling plans

can be designed if the truncation point and are known. For

the unknown o case it is shown that the operating characteristic

curve is dependent upon the unknown 9.
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INTRODUCTION

Most of the published sampling plans for inspection by variables,

e.g. the MIL-STD-414 and BS 6002, assume a normal distribution of the

inspected quality characteristic. It is often the case that this assump- .-

tion is not justifiable, since there are some departures from the normal

distribution. Some investigations concern the robustness of the variable

sampling plans if the skewness and the excess differ from normality. A

summary of work on variable acceptance sampling with emphasis on non-

normality is given by Owen (1969). Das and Mitra (1964) use the Cornish- -

Fisher approximation up to three terms to compute the corresponding pro- -

babilities, i.e. those of rejecting lots with an acceptable quality

level (AQL) and of accepting lots which have limiting quality (LQ). A

non-normal distribution with known skewness and excess is assumed.

Masuda (1978), using simulation, investigates the robustness of normal

sampling plans applied to Student and Lognormal distributions. Schneider

and Wilrich (1981) investigate the operating characteristic curve (OC) of a -

variable sampling plan when the underlying distribution is the Beta-

distribution. Furthermore it was pointed out that in the case of a Beta-

distribution the Cornish-Fisher approximation is rather poor, since the

probabilities of acceptance, computed by this method, are much too high.

Some papers deal with the design of variable sampling plans based
%.

on specific distributions such as Gamma (Takagi (1972), Weibull (Ilosono

et al. (1980)). Srivastava (1961) considers the Cornish-Fisher approxi-

mation to design variable sampling plans. ,.'.*

• e%.o-e_.*
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In this paper the effect of truncation is investigated. A

truncated normal distribution is suitable in many practical situations

where there is a restriction on the variable under consideration. For

%; instance a truncated normal distribution arises in production engineering
k

when sorting procedures eliminate items above or below designated tolerance

limits. Truncation often results from technical constraints of a produc-

tion process. Firstly we will investigate the robustness of standard

variable sampling plans with respect to the truncation point. Afterwards

we will deal with the design of variable sampling plans based on a trunca-

ted normal distribution with given variance a In the final section the

unknown a case is discussed.

1. Robustness of variable sampling plans

We assume the quality characteristic of the inspected item to be a

normally distributed random variable X with parameters V, a2 and trunca-

tion point Xr, where 2 and xr are known. A one-sided specification

limit U is assigned. Let us consider an upper limit U < xr . Items

which have X > U are defective. Note that a lower limit L can be treated

similarly. The p.d.f. of the quality characteristic X is given as

• 1 , cXE..)/, (.. .r.) x C X 9..

;~~ "X< X

f(x) = a()

0 x>x r

where #(x) and O(x) are the standard normal p.d.f. and c.d.f. respectively.

The proportion of defective items in a lot is thus

"•-9."

• * , .• . %-%" .° ." % %"• ° - % • , • , * % - . - - • . .
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X-j . x -.-
p r - r

If we let v (U-1)/o and A =( x -U)/a then we obtain" ,
p r
p = 1- O(V )/O(A+Vp) (2)

P p

According to an agreement between the producer and the consumer, lots

with a fraction defective p I AQL are presumed to be good and ought to

be accepted with probability at least 1-a. Futhermore lots with p > LQ

are not acceptable to the consumer and should be rejected with probability

at least 1-0.

Lieberman and Resnikoff (1955) established the following procedure

of variables acceptance sampling for the non-truncated case. If the

specification is an upper limit, the value t

t = x + k (3)

of the test statistic T = + ka is compared with the specification limit

U. On the basis of this comparison, each lot is either accepted (t < U)

or rejected (t > U). Accordingly, a variables plan is specified by the

parameters n (sample size) and k (acceptance constant). The desired

(nk)- plan has to fulfill the condition that the OC-curve of the plan

will pass through the points defined by (AQL, 1-a) and (LQ,S). To com-

pute the sample sixe n and the acceptance constant k, we have to analyse

the distribution of T for a given fraction defective p. The OC-curve

is given as

L(p) - P(T < Ulp) (4)

: .:- : :,:,- : : : , --- .,.,:. ..,. .. ... .., ,... ..: ...,., .. ... ._..,... ..-,, .. . . . ......
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If the variance of X is known, the statistic T is normally distributed.

Taking into consideration the requirements

L(AQL) = P(T < UIAQL) = 1-a (5)

L(LQ) =P(T < ULQ) =B (6)

it is not difficult to calculate the parameters (n,k). There exist well

known published sampling plans such as MIL-STD414 and British STD6002.

In order to investigate the robustness of these sampling plans with

respect to a truncation, the OC-curve of these plans is examined for the

case where X is truncated at xr Given a truncation point xr the expected

value and the variance of T are

E[T] = - oW(ur) + ko (7)

and

VT 2 (8).V[T] a [I W(Ur){W(Ur)+Ur (8) :'

respectively, where (see Johnson and Kotz, 1970)

W(Ur) = *(ur)/ (ur) (9)
rr r

u = X-)/o = + Vp (10)
r r p

The OC-curve of an (n,k)-plan is then asymptotically given by

L(p) 0 *({vp-k W(A+vp)) (1(A+V (11)
p p p

where

A

,S.o

1-.c



Y(A+v ) l-W(A~v ){W(A.v )+,&+v }1(12)
p p p p

and vpis the solution to equation (2).

Example

We consider the example AQL =0.01, LQ =0.03, a 0.1 and 8 0.1.

In the untruncated case we obtain the sampling plan n =34, k =2.106.

Applying this plan to a truncated normal distribution the probabilities

of acceptance alter according to the amount of truncation. Some proba-

bilities are presented in Table 1.

Table I

A L(AQL) L(LQ)

<0 0 0

0.05 0 0

0.1 0 0

0.2 0.05 0

0.5 0.74 0.01

1.0 0.88 0.07

2.0 0.90 0.094

3.0 0.90 0.095

0.90 0.1

For small values of 6 the probabilities of acceptance differ signifi-

cantly from I-* and 0 respectively. This implies for instance that if a

producer screens his production near the upper specification limit and
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the consumer applies a standard variable sampling plan it is very likely

that the lot will be rejected.

In Figures 1 and 2 the OC-curves are plotted for two other examples

taken from BS 6002 which is very similar to the MIL-STD-414. Curve I

shows the probability of acceptance of an (n,k)-plan if there is no

truncation, while curve II shows the probability of acceptance of the

same plan after a truncation.

2. The design of a variable sampling plan for known a

We consider the statistic

T'= t + ka (13)

where V is the maximum likelihood estimate of . The likelihood function

in the truncated case is

n 2 2
L(xl,...,xn;xruo) = exp(-Z (x.-U) /2a )/[O(u )/2- a]n (14)

1 r r

2
Since a is assumed to be known the maximum likelihood estimate of U is

the solution to

aIn (u) n 2
3an L T (xi-z) = 0 (15) -= -n i=l :' "

This equation can be rewritten as

-- 0 (16)

-OW %." -

where W(x) - *(x)/O(x). Since (16) cannot be solved analytically, we

suggest using one of the following methods.

* ... :o... "
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Taylor Approximation

Let e = -R)/a, then for 8 > 2 the Taylor approximation might be
r

used.

i x oW(e)I(l+W' (6)) (17)

where

2 2W'(e) = -[, (e) 64(e)O(e)]/0 (a) (18)

The error is then less than 7% of (p-x)/c ,

Rational Approximation

A common method of obtaining closed solutions for a nonlinear

equation with one variable, like (16), is to use rational functions to

approximate the functional relationship. If we let 6 (-x)/a and

0 = (X -)/a, then 6 is only a function of 0 and the estimates p arer

given by

= x.6(0)

Several rational approximations of the form

n• .6 = Pn(6)/Pm(e) + c(6) '"

were tried, where P (e) and P (8) are polynoms of degree n and m respec-
n m

tively, and eCO) is the approximation error. The following approximation

for 6 is over the range of interest for 6, i.e. it is assumed that the

right truncation point is above the mean of the untruncated population.

'S.%
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For left truncation it is assumed that the left truncation point is below

the mean of the original population. When less than 50% of the population

is truncated then 0 > 0.7979. If 8 lies below 0.7979 the truncation is

so severe that a normal distribution should not be used since the variance

of u becomes too large. if e is larger than 4.33 the truncation will be

ignored since the error is less than 10 5a. For the range where the

Taylor approximation does not work we found the rational approximation

6(P) = P3(8)/P 2 (e) c c(e) 0.7979 < 0 < 2

The approximation error is Jc(O)f < 1.3 10-  . When

2 3
P (6) = 17.79998379 - 19.306575258 + 7.22939241e - 0.93579742-

P 2 ()= 1 + 12.023480026 - 3.798744S02e

For the range 2 < e < 4.3 the rational approximation

2 3
P3 (0) = 0.36123448 - 0.261369210 + 0.063490236 - 0.00517176e

P2 (O) = 1 - 0.92775053e + 0.4174792682

was derived, where E(e)I < 2.10 This approximation can be used as

an alternative to the Taylor approach, but the Taylor approximation

becomes more accurate as 8 increases.

Having an estimate of p the value

t= + ko (19)

is compared with the upper specification limit U. On the basis of this

comparison each lot is either accepted or rejected. In order to determine

. - .
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a sampling plan such that its OC-curve passes through the points

(AQL,l-ci) and (LQ,S) the distribution of T' has to be evaluated. It

is easily shown that V is asymptotically normal with mean V and variance
2

Y~r where'u ) is defined by

Y(Ur) [I (1-I(u r)(W(ur)*r)] (20)

* - and

ur ~+V
r p

Hence the OC-curve is approximated by

L(p) =p(T' < Ujp) 0 ((v -k) (n/y (u ) (21)p r

and subsequently n and k are solutions to

L(AQL) I -a (22)

L(LQ) =8(23)

Let u1  0- (l-CL), u8 0= (8) and let vAQ~v be the solutions

to equation (2) for p =AQL and p =LQ respectively, then we are able to

write the equations (22) and (23) in the form

•AQLIk) U (2
* ~(A+VA)

and

(V -k) U8  (25)
T(MLQ

and thus
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k* 1-A AQL una* L.

(AQL vLQ)

= AQL ~ 1 a -Thi + 1]

where [x] is the integer part of x. - "

Tabe 2 shows the sampling plans for the case considered in Example 1.

TABLE 2

A n* k*

0.0S 33 -0.79

0.1 18 0.67

0.2 19 1.47

0.5 27 1.96

1.0 32 2.08

2.0 34 2.10

- 34 2.106

It turns out that the appropriate sampling plan has an even lower sample

size than the standard sampling plan. But this is not always the case

as some other examples show. We have selected some sampling plans from

the British Standard Table III-A single sampling plans for normal inspec-

tion master table to' method. We have calculated the true probabilities

of acceptance for the case the normal distribution is truncated. Further-

more we have evaluated formulas (26) and (27) to obtain the appropriate
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sampling plans which are denoted as n* and k*.

Since the evaluation of these sampling plans are based on asymptotic

results we have performed a simulation study with 10,000 samples to cal-

culate the probability of acceptance of the (n*,k*)-plans for small

sample sizes. The results presented in Table 3 show that the suggested

plans are able to cope with the situation where a quality characteristic

is truncated normally distributed, given that the sample size n is large

enough to justify the use of the asymptotic results. When truncation is .-

heavy, i.e. small A combined with large p values, the sample size has to

be larger than 20 in order to obtain accurate results by using the normal

approximation. It can be seen from Table 3 that for small sample sizes

(code letter I) and truncation near the specification limit (A = 0.2)

the probability of accepting lots with p = LQ is significantly smaller

than assigned, while the probability of accepting lots with p = AQL is

met.

3. The unknown a case

The maximum likelihood estimates of and a are solutions to the

equations

a0nL aInL 0 (28)

The solution can be found by the Newton-Raphson method. To avoid iteration

we propose the following rational approximation. Firstly, we shall re-

duce the two equations (28) which have to be solved simultaneously to

one equation. To do this we apply the following transformation due to

%::... . . ...,. . . . .. . . . . . . . . %%
" " " .. . ... ." .' ,£: 4 " ,r ......" "-"-"'"" -' '-": -'-:' "-" "-,".":"-, Q,,J "," -" .-, " - ,.- .'.',:.-'',""--..".-" '-,X '.',
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Table 3.

Simulation results

(n,k) plans taken from BS 6002, L(pl)=0.9, L(p2)=0.l for the untruncated case.
. • ~ -,.-';"

(n ,k ) derived by (26) and (27).

L(p1 ), L(p2), L (p,) and L (p2) are simulation results of 10,000 samples.

**a***t *******a***a***aw****** S*******W************CD

AOL* A tJ K P1  P2  L(P 1 )L(P 2 ) N* K* C(P1 ) L!(P 2 ) *LETTER
t•***** ****t ~***a ****** *~**** t t ******* *******a *ttt t ta*t .%-

..20 7 2.z5 .0032 U399 .593 .0 5 1.73 .893 .050 '
• .50 .853 .033 6 2.12 .900 .083 *

0.25 • 1.00 .891 .080 7 2.23 .900 .088 ,
• 2.00 .896 .093 7 2.24 .900 .096 *
t *. **, *** *** **,.*.a** ,*tt**,t ,*,,* t , t a*t*****tt ** t****** t ***a*::: "

S .2o0 8 1.96 .0080 .0646 .476 .0 6 1.34 .890 .046 "
o .50 .839 .028 7 1.81 .893 .07q "

.65* 1.00 .891 .085 8 1.94 .499 .089 , -
2 2.00 .898 .105 tQ 1.98 .901 .085 -a****tt********.*******t i ** ****a**t**.***ttt *i***t~*t **"a*" .

• .20 15 1.13 .0721 .2124 .091 .0 21 .05 .884 .066 "
650 * .50 .744 .009 13 .79 .890 .076 '

* 1.00 .883 .060 14 1.05 .900 .089

2.00 .899 .097 1S 1.13 .904 .098 *

• .20 19 2.41 .0035 .0174 .312 .0 12 1.90 .896 .080 * .
0.25 * .50 .815 .030 17 2.30 .897 .089 * L

1.00 .886 .081 .IQ 2.39 .902 .090 .
2.00 .894 .095 T2 0 2.41 .905 .091 *

• .20 23 2.12 .0086 .0324 .139 .0 13 1.48 .900 .089 *
0.65' .50 .777 .016 19 1.97 .900 .091 * L

* 1.00 .883 .074 22 2.09 .912 .098 *
2 2.00 .896 .094 23 2.11 .90b .097 •

* .20 4? 1.24 .0759 .1L49L .0 .0 46 .13 .891 .081 * '

6.50 * .50 .544 .002 34 .90 .901 .088 * L
2.00 .859 .0S4 39 1,17 .887 .095 •
2.00 .894 .095 '43 1.24 .901 .083

* .20 37 2.47 .0037 .0121 .115 .0 22 1.98 .891 .084 .
0.25 * .50 .777 .019 31 2.36 .906 .095 * N

100 .885 .077 36 2.°5 .903 .099 '

* 2.00 .897 .094 37 2.47 .898 .096 "
* .20 44 2.17 .0089 .0236 .025 .0 25 1.57 .895 ,090 .

0.65 * .s0 .735 .012 37 2.04 .902 .090 a ,. '
* 1.00 .890 .083 43 2.16 .892 .099 *
* 2.00 .907 .108 t45 2.18 .902 .094 *

This values deviate from the n values in the tables BS 6002 due to the method

of rounding the non integer values n*.

*
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Cohen (1959).

Let

2 :'
s (29)

then the equations (28) can be reduced to an equation for ur

1 - W(ur) (W(ur) ur) (30)

[W(u + *.u
r r

Let

W(u).

r r

where ur is the unique solution to equation 30; then the maximum likeli-

hood estimators can be written as
'2

^2 2 2 Q(w)(x.-2
a + (s x) (31)

Ar

Q(w)Cxr-i) (32)

The following rational approximation for Q(w) was derived which can be

used when the truncation is less than 50% of the population. Truncation

higher than 50% corresponds to w > 0.57081.

(i) If w < 0.06246 (corresponds to ur > 4), then set Q(w) = 0.

The maximal absolute error is less than 10-S.

(ii) If 0.06246 c w < 0.57081 then set

Q(W) * P4(w)/P 3 (w) e(w)

2--. ,:-.9

-. __.... .- .. 2. -.. , ,. . . . . . . . . . . . . . .'.-...-.."
: . _ , , w- - .- ,. ,-,o. -, .. ',,-'. . ' .. % .-9.' . •. '., . ..-. .. ...- * .. . . - ,"



P4 (W) -0.00374615 + 0.17462558w - 2.87168509w2

4P

+ 17.48932655S3 - 11.9171654w4

2 3P3(u) 1 * 5.74050101w - 13.53427037w + 6.88665552w ,

The maximal absolute error, is then Is(W)l !5 5.10 - 6

No approximation will be given for w > 0.57081, since the variances

of the estimators become extremely high.

Asymptotic Variance

The variance and covariance of the estimators a and o are obtained

by inverting the Fisher information matrix

L 2 2 2 l: :-E[a2InL/a 2u] -E[3 2tnL/82 o3]

nJ 2. "2"'''

-E[a2knLl/30°] -EP [I2nL/)2 a] J1 J2; :-
-A. 21 22A-

where the elements Jij are given by

l -W(u)(W(ur)+U (33)

1 2 = -W(u)[l + u(W(u)+u)J (34)

2 2 + u 2 (35)

The asymptotic covariance matrix (ASCV) is thus :i

ASCV(U O (36.

L'LO14L) n 2 1 1 1 2 ij(62 _
1122:'

r .*_ .. ' ,L, .,e , .. , . .. _. .. '-,',e_-" *% e"-"; .. -. , k-, -, . • , , , * , _ ".- * •~*
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Variable Sampling Plans for Unknown a

We consider a quality characteristic X which has a right truncated

2
p.d.f as given by (1), in which a is assumed to be unknown. An upper

specification limit U < xr is assigned. Let vp (U-1)/a and

A = (X -U)/o; then we obtain as in Section 1
r

p = 1- (37)4 (A +v )
p

But now, since a is unknown, there is no one-to-one relationship between

v and p. We will proceed as in the known a case and define the statistic
p P ._A

T = + * ka (38)

We know that T is asymptotically normally distributed with expected value

E[T] = E[p) + kE[a] (39)

and variance

V[T] = V[p] k 2 V[;] + 2k Cov[;,a] (40)

where V[p], V[a] and Cov[u,a] are given by (36)..

In principle it is not difficult to find the distribution of T for

large n but the operating characteristic curve (OC) will unfortunately

depend on the unknown a. The OC-curve is defined by

L(p) - P(T < Ulp). (41) ,

Thus the OC-curve of an (n,k)-plan is approximately

a- "

•° ,'-
-."."
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L(p) -t([n/ y(A+vp,k)] [(U-)/a-k]) (42)
p

where

J + k 2  J 2kJ 1 2

yCA+Vpk) -- (43)J11J22"J12 12....

Since y(A+v ,k) is not only a function of p but also of A and thus of
p

2
a the OC-curve is dependent on the unknown a

Table 4

The Probability of Accepting a Lot with AQL and
LQ percent defectives for a' = a, .9a, 1.1a

a' A n k AQL LQ L(&QL a') L(LQIa')

1.00 0.2 20 1.48 .83 4.46 .900 .100 1
0.9a .839 .090

1.1a .934 .117

1.0a 0.5 26 1.95 .810 3.90 .900 .100

0.90 .877 .082

1.1la .913 .116

i.Oa 1.0 30 2.05 .865 3.97 .900 .100

0.9a .893 .094

1.lo .905 .104

A rough and ready method is to use the sample variance derived "

from the lot history, in order to determine a sampling plan for given

risks (AQL,I-a) and (LQ,8). Such an approach would be justified if L(p)

2
is not very sensitive to small changes of a , given the sample sizes

are sufficiently large. A study of the OC-curve at AQL and LQ for var-

I|ji_
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ious A and a shows that the OC-curve can change significantly when the stan-

dard deviation differs about 10% from the assumed standard deviation and

the trucation is heavy. For instance, when the true standard deviation is

10% lower than assumed, then the probability of accepting a lot at AQL

might decrease drastically as shown in Table 4. For example, if A = 0.2

then L(AQL) drops from .9 to .839. When the truncation is moderate the

differences might be ignored in applications.

In this paper we have considered only the singly truncated normal

distribution. The performance of variable sampling plans for a doubly

truncated normal distribution can be investigated in-a similar way. Un-

fortunately the estimating procedure becomes more complicated. Only iter-

ative techniques are available.
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